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Central Crack in a Piezoelectric Disc  

Jong H o  Kwon* 
Department o f  A utomotive Engineering, ShinHeung College 

117 Howon-dong, Uijeongbu, Gyeonggi 480- 701, Korea 

This study is concerned with the general solution of the field intensity factors and energy 

release rate for a Griffith crack in a piezoelectric ceramic of  finite radius under combined 

anti-plane mechanical and in-plane electrical loading. Both electrically continuous and 

impermeable crack surface conditions are considered. Employing Mellin transforms and Fourier 

series, the problem is reduced to dual integral forms. The solution to the resulting expressions 

is expressed in terms of Fredholm integral equation of the second kind. The solutions are 

provided to study the influence of the crack length, the crack surface boundary conditions on 

the intensity factors and the energy release rate. 
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1. I n t r o d u c t i o n  

Piezoelectric materials, such as lead zirconate 

titanate ceramics (PZT) possess high degree of 

linearity, high power density, greater efficiency 

and potential for low cost manufacture in com- 

parison with alternative electromechanically 

coupled materials. Indeed, the creative applica- 

tion of piezoelectric materials in engineering has 

given rise to the remarkable progress in the de- 

velopment of sensors and actuators in smart 

structures. Piezoceramic actuators and sensors 

have been used in smart structures to obtain 

precision positioning, vibration suppression, and 

noise control. However, piezoceramic materials 

contain micro and macrodefects and behave in 

a brittle fashion. Because the performance of 

piezoelectric devices is affected by these defects, a 

number of studies have been performed ; see, e.g., 

the works of Deeg (1980), McMeeking (1989), 

Pak (1990), Sosa (1991), Park and Sun (1995), 
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Shindo et a1.(1996, 1997), Meguid and Wang 

(1998), Wang and Meguid (2001), Kwon and 

Lee (2000, 2001), and Kwon and Meguid (2002). 

To effectively design and fabricate piezoelec- 

tric actuators and sensors, their behaviour must 

be evaluated and understood under conditions 

simulating their operating environments. In many 

practical applications, especially in sensor tech- 

nologies, piezoelectric ceramics can be produced 

in many shapes and include discs, plates, tubes, 

rings, washers, hemispheres, and spherical ele- 

ments. Some attention has been focused on the 

crack problem in a rectangular piezoelectric ma- 

terial ;  see, e.g., Kwon and Lee (2000, 2001). 

However, the crack problem in a piezoelectric 

disc or cylinder has not been given its due atten- 

tion. In addition, the electric boundary condition 

along the crack surface of piezoelectric materials 

is still an open problem. The permeable or con- 

tinuous condition implies that the normal com- 

ponent of electric displacement and the tangential 

component of electric field should be continuous 

across the crack surface. Recently, Zhang et al. 

(1998), Narita and Shindo (1998) and Gao and 

Fan (1999) argued the validity of this condition. 

In contrast, Pak and Goloubeva (1996), Zhao et 

a1.(1997), Liu et a1.(1998) and Qin and Mai 
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(1999) used the impermeable crack condition. It 

is for these reasons that I offer the current study. 

In the present paper, the field intensity factors 

and energy release rate are provided for a Griffith 

crack in a circular piezoelectric ceramic under 

combined anti-plane mechanical and in-plane 

electrical loading. Two problems of the electri- 

cally continuous and impermeable crack surface 

conditions are considered. The problems are 

reduced to the forms of dual integral equations 

by use of Mellin transforms and Fourier series, 

and the solutions are expressed in the terms of 

Fredholm integral equation of the second kind. 

Analytical solutions are provided to study the 

influence of the crack length and the crack surface 

boundary conditions. Numerical examples of the 

stress intensity factor, the electric displacement 

intensity factor and the energy release rate show 

the dependence of these quantities upon the two 

different crack surface boundary conditions con- 

sidered in the study. 

2. F u n d a m e n t a l  R e l a t i o n s  and  

P r o b l e m  S t a t e m e n t s  

Consider a circular piezoelectric ceramic of 

radius R containing a Griffith crack of length 2a 

at its centre, as shown in Figure 1. It is assumed 

that the anti-plane shear stress r(r) = r0 and the 

in-plane electric displacement D(r)=Do act on 

the crack surfaces, as depicted in Figure 1. 

In this case, the mechanical displacements and 

electric fields are simplified such as 

Ur=Ur(Y,O)=O, UO=UO(T,O)=O, Zlz=~lz(r,O) (1) 

E~=Er(r,O), Ee=Eo(r,O), E,=E~(r,O)=O (2) 

Fig. 1 

r0 
® ® ® ®  
~-- -~ c rack  
® ® ® ®  

Do 

A central crack in a piezoelectric disc 

Therefore, the constitutive relations for this prob- 

lem can be expressed in the cylindrical co- 

ordinates system as:  

a 
7zr(r, O) = 0-~-uz(r, 0), 7n(r, 0) = r-~-uz(r, 0) (3) 

Er(r,O)=- ~--~o(r,O), Eo(r,O)=- r~O(r,O) (4) 

rz~ ( r ,  0) = c , 7 ~ ( r ,  0) -elsE~(r, O) (5) 

Dr(r, O) =e157~(r ,  0) + e u E j ( r ,  0) (6) 

where j =  r ,  0. Also, uz ( r ,  0),  q~(r, 0),  E~ (x, 

y) ,  and D~(x,y) are the mechanical displace- 

ments, electric potentials, electric fields and elec- 

tric displacements, respectively. The coefficients 

c44, els and en are the elastic stiffness, the piezo- 

electric constants and the dielectric constants of 

the piezoelectric materials, respectively. 

In the cylindrical co-ordinates system, the 

respective equilibrium equation and the equation 

of electrostatics are expressed as 

0 0 1 
Or r~r +rffO r~O + r  - rzr=O (7) 

a Dr +r-~Do +lDr=O (8) Or 

From Eqs. (5 ) - - (8 ) ,  the anti-plane governing 

equations for the present boundary value problem 

become 

2 2 ¢44VcUz(r, O) +elSVc~(r, O) : 0  (9) 

e~sVgu~(r, O) - ~11Vgq~(r, 0) = 0  (10) 

2 ~ o ~ 0 
where V~=ffr2r2 + r~ffOz q _. __ rc~r " 

By considering the geometry and electrome- 

chanical loading, the following boundary con- 

ditions should be satisfied: 

{ z ' z r ( R ' 0 ) = 0  (0<---0<27r) } (11) 
Dr(R, O) = 0  (0<--0<2~r) 

As indicated in the introduction, the crack surface 

boundary conditions of piezoelectric materials 

have been studied by numerous investigators, and 

remain a subject of contention. In this study, we 

consider the following two combinations of the 

mixed boundary conditions : 
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Mechanical mixed boundary conditions 

I rzo(r,O)=-r(r)=-ro (lr'<a) } 
u.(r,0) =0 (a<lrl<R) (12) 

( i) Electrical mixed boundary conditions based 
on continuous crack surface 

"Oo(r,O+)=D~(r,O-)=O (Irl <a) } 
Er(r,O+)=Er(r,O - ) (Irl <a) (13) 
9(r,O) =0 (a< I rl <R) 

(if) Electrical mixed boundary conditions based 
on impermeable crack surface 

Do(r,O)=-D(r)=-Do(,rl<a) } (14) 
~(r, 0)=0 (a< I rl <R) 

3. Analytical Solution Procedure 

The mechanical displacement and electric 
potential can be described from the governing 
equations ((9) and (10)) by applying the Mellin 
transforms and Fourier series ; as follows : 

1 l'c+i® (1 1.,( \ ) f - s  

u'(r'9)=~k~ A ~ ( s ) c o s t [ ° - 2 ) s t ~  ds (15) 

+ ~, Ba(n):sin(nO) 
~1=1,3,... 

l :c+i~ ( /  ~ \  ,~ y-s  

sc.( s) (16t 
+ ~ B2(n)r"sin(nO) 

n=l,3,'" 

The field variables are expressed using Eqs. 
(3) ~ (6), such that 

l tc+i~ f l  E \  ) r -s-I  
7,r(r, O) =-~Z~ J, ' A,(s)cosll O-T ) s t ~ d s  

-'® Cos(~-S) (17) 

+ ~, nBl(n):-lsin(nO) 
n=l,3,... 

1 :c+i~ : /  z \ ~ r -s-I 
7,,(r, O): - Z J c .  At(s)sint t0-T)sl--T~ ds cos( s) 

+ ~, nBt(n)r"-lcos(nO) 
n=l,3,... 

1 : c + ~  ( /  7(\  I ?.-s-1 
Er(r, O) :~Jc ~ A'(s)cosll O-~ ) s l ~ d s  

-" Cos(~-S) (19) 

- y, nB2(n):-tsin(nO) 
n=l,3,... 

1 :c+~® (: ~r\ i r -s-I 
Eo(r,O)=~iL = Az(s)smt[O-T)st~ds 

- ~ nB2(n):lcos(nO) 
n=l,3,'" 

(20) 

1 :c+~= 
r.r(r, O)=-~J,_~ [C.Al(S) +elsA2(s) ] 

f /  E ~' "~ r - s - i  coslIo-y)sI d  

+ ~ n[c.B,(n) +e,sB2(n) l r "-~ sin(nO) 
n=l,3,.- 

(21) 

1 f c+i® r.0(r, 0)=-~j,_= [CuAl(S)+easAz(s)] 

( /  ~ ~ I r - s - I  smllO y)sI ds 

+ Y n[c.Bl(n)+e~sB2(n)]r "-~cos(nO) 
n=1,3,,,. 

(22) 

- - _  l :c+i® 
Dr(r, 0)- ~Jc-~* [elsAl(S)-etiA2(s)] 

f l  7r \ ] .{-s-I cosllo-T)sI ds 

+ ~. [O~Bl(n)-¢llBz(n)l:-tsin(nO) 
n=l,3,.. 

(23) 

1 / 'C+~  
De(r, O) =-~iJ~_~® [e~sA,(s) -enAz(s)] 

( /  ;$ \ ~ r-s-1  
s i n l t O - T ) s I ~ d s  co ( s) 

+ ~,, nIelsBx(n)-SlxB2(n)lr n-I cos(nO) 
tt=l,3,.., 

(24) 

Using the Fourier sine series pair, Eq. (11) gives 
the following relations 

4 1 ec+~  R-S 
Bk(n)=-R-":=] Ak(s)~.2ds (k=l,2) (25) 

7r L/r1 J c -~  n - S  

3.1 Solut ion for e lectr ica l ly  continuous 

crack boundary condition 

In the case of electrically continuous crack 
surface condition, the following two pairs of dual 
integral equations are obtained from Eqs. (12) 
and (13), 
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1 C+M -S ds d r ~r 2~i ~ f-~ [ C"Al(S) + e~sA~(s) ]~tan( Ts ) 

I - ~ n[c.B~(n)+ez~B~(n)]r"-'=r, (Irl<a) 
~=I,3," 

1 ec+~ r-S 
I ]Ti J~-~ At(s ~ds=O (a<lrl<_R) 

1 d ~c+~ r-S 
5 ~ J ~ - ~  Aa(s)~ -ds=O (I rl <a) 

1 rc+~ r-s 
T~J~-~ A~(S) S ds=O (a<lrl£R) 

(26) 

(27) 

The solution of Eqs. (26) and (27) can be 
obtained by introducing the new function ~bk (~) 
such that : 

1 1 

1 1 A.(s)  2 F ( ~ - + ~ - s )  
(28) 

Making use of Eqs. (27) and (28) leads to the 
result that c, b2(8)=0. And, we can establish that 
Az(s) = B 2 ( n ) = 0  from Eqs. (25) and (28). 

Therefore, using Eqs. (25) and (28), the dual 
integral equations (26) can be rewritten as 

d 
d T f  ¢~(~)I]~(r,s,~)d~ 

n=l,3,... R dO 
(29) 

= ro (I r l < a) 
C44 

iaqjl(~)IL(r,s,~)d~=O (a<lrl<R) 

where 

F l l \F [ 1 \ 
l pc+,= t2 ]  t y S ] l r \  -s /st \ ,  

]-I '(r 's'~)=~£i= . . [ 1 .  1\ t~} tantys/as 
~VT*TsJ 

(30) 

F I  1 

.~,s,~)=~j~_o ~ { T )  77-~ ~ds 
2rtT+Ts ) 

(31) 

F i 1 ~F [ 1 \ 
. . . .  1 if+i® t2 ]  t YSj[ \r-s 

ds 
-* 2F(~+fs) 

(32) 

In addition, the right sides of Eqs. (30)~  (32) 
can be respectively expressed as (see Appendix 
for details) : 

[ ~ 1 
1 e + i ~ I ' \ 2 ] I ' \ ~  s r -s rc 

2nif¢]~ 2 F ( l + l  s ( ~ - ) t a n ( T s ) d s  

(33) 
o l r l < ~  

= ~ '  I r l>8  

2~rigc-~ l1 l X t ~ ]  n~=~-s ~as 2Q~+ys] 
(34) 

1 1 

1 1 

1,[  1 X p [  1 X 
1 i "c+= t2- ]  t Y  s ] l r \ - s  

2-m" Je-~ I1 lX  t~)  ds 

2 F ( y + y s )  (35) 

8 'lrl<8} 
= 

o ' l r l > 8  

Substituting Eqs. ( 3 0 ) -  (35) into Eq. (29), the 
unknown function t, bl(8), for an electrically 
continuous crack condition, should satisfy the 
Fredholm integral equation of the second kind 
and take the form, 

i~l(~)+i;l(, ) . ~n-I dr/=~ ( 3 6 )  

c : "  t (T+v,)J J 
Equation (36) can be rewritten in the following 
normalised form : 

~ ) I ( E ) + / I ~ ) ~ ( H )  Q(n,a,R,E,H)dH=,/~ (37) 

where 

~('~'a'e":'H)=7.=~,..."l~/{~-) (=m (38) 

and 

~=aS, v=aH, ~(~) 

~ ( ~ ) _ l r  ro ~(H)  
2 c~ , /~ 

2 C44 ~ ' 
(39) 



v,o -~ 
(~g) ~{(~)~¢ } o~ ve =0 

(~g) (i);~ve~'0:= (o'.~)-2 (v-~)uz/'tu!I='3t=_~3t 

(o~) o= (o',~ ) °3 (v -.~ ) ~tzptu!i= ~t 

(617) ([)'g)~j-= (0'-z) °zg (v-,,t)-/tZ/'stu.II=z.)/ 

uo!l!puoa aavf.tn, )/avaa snonu!moa ,fllVa!.taaal.Y 

: S~OllO J se pau!mqo ueo O ales aSealaa ;{~sauo 

aql pue r.Tq ssolaej ;~l!sualu! plo~ aql sos suotss 

-aadxa aql 'suo!lt.uuap ale!sdoadde aql tuOarl 

pun sso3a~I ~l!suoluI plO!~l "1~ 

(8~) 
,-'£2 

(H) ~.~ ~ (~)'¢ 

-- w ~-= (.~)~ 'HV=tZ 'ffv=~ 

pue '(8£) %3 
se elntuao J atues aql s! (H'U'hr'z?'u)0 asaq~ 

: tusoj pas!Ietuaou ~u!~o I 

-|as aql ti! tlall!s~aa aq OSle ueo (91~) uo!lenb~ 

'tusoj aql a~pzl uea 

pue pupl puoaas aql jo uo!lenba IeSSalu! tuIO q 

-paa::I aql £js!les plnoqs uo!l!puoa :lasso alqeatu 

-aadtut Rllea!slaaI a aoj (~)~ql UO!launj umom I 

-un aql 'uo!l!puo3 ,-lOeSs snonu!luoa ~Ilea!slaala 
jo asea aql u! aanpaaosd atues aql ~u!sD 

(e~) 
~(0£) sb~ u! pap!Aoad s! (~'s'.z)=l. I aJaq~ 

(~.t:,) 

(&r~ [.zl >v) 0=~p (~'s'~)~H (~)~'q~ 7 

(z:,> I.~1) 

,~ =~p (~ 's ',)ZH (~),¢ff~_~u_~/u~'~ == - 

se uall!a~aas aq ue3 (Elf) uo!lenba ies~alu! 

Ienp aql '(171~) pub (gg) "sb R ~utsn 'aaojaaaq± 

(~) 

:(~)'tgh uo!launj ,au aql ~u!anposlu! 

gq pau.!elqo aq uuo (~l~) "b~t jo uo!mlos aqi 

__zD ' _[/9 
0Gv¢~ _ 02 ~tO o(7~ + 0.2 t~9 

aaaqax 

(z'e) (v>l~l) 

'tusoj ~uDxolIO 3 aql u~ 

passasdxa oq ueo (01:') pue (9E) "sb~I '(I'e) ~u!sfl 

(t~,) 

...'g'i=U 
,_~ (u ) ~8u ,7 - 

'suo!lenba IeS~alu! lenp jo s.ned oaxl OAoqe aql 

0AIOS O1 uo!launj axau e auuo p ol lua!uaAuoa s! aI 

(m,) 
...'~'I=U 

leql qans ' (017) 

pue (9~) suo!lenba Iea~alu! Ienp jo s.ned o~1 

aql a^!~ (~t) pue (Zl) sba 'uo!l!puo::, aae%ms 

3tae.x:) alqeatusadtu ! ,qI'e3Ml:)ala jo as-ea aql uI 
uo!l!puoa ~anpunoq ~laBaa 

alqBatuaadtu ! ~llea!alaOla Joj uoDnlo S Z'~ 

~I a~!a a!alaalaOZdld ~ u! ~/avaD lValUaD 
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Electrically impermeable crack surface condition 

K~=lim~/2z( r -  a) 7~o( r, O) 

eu Vo + e15Do ~ -  
v ~ra qr~ (1) 

C44Ell "~- ClS 

(54) 

Ke = l imJ27r ( r - a) Eo ( r, O) r-a 

-- c44Do- elsro f ~ d  grk (1) 
c~4e~ + e~5 

(55) 

K~ = K i n  = l i m ( 2 z  ( r -  a) r~o ( r ,  0) 
T-- a 

= r0TYagk (l) 
(56) 

/ ~  = l i m ( 2 z  ( r -  a) Do ( r ,  0) 

= D o , / ~  ~h (1) 
(57) 

G -  ;ra e,, r0Z+2e,sr0D0 - c44Do z }2 
2 c44eu+e~5 { gk(l) (58) 

where ~1(1) ~--~1(~)I.~=l and ~k(1) = ~rk(s)l~=l. 

5. Numerical 
Examples and Discussions 

In  this section, several numerical  examples are 

presented to show the influence of the crack 

length and the crack surface boundary  condit ions 

upon the stress intensity factor, the electric dis- 

placement intensity factor and the energy release 

rate. Two piezoelectric ceramics BaTiO3 and P Z T -  

5H are considered for the numerical  analysis, and 

their material properties are listed in Table  i. The 

following arbitrary loads of  z'0 = 1 .0 (N/m z) and 

Do=l .OXlO-3(C/m z) are used to compare the 

numerical  results for both cont inuous and imper- 

meable crack surfaces under the same conditions.  

Table 1 Material properties of piezoelectric ceramics 

Piezoelectric materials BaTiO3 PZT-5H 

Elastic stiffness c44(N/m z) 4.4 X 101° 2.3 X 101° 

Piezoelectric constant el5 ( C/m 2) 11.4 17.0 

Dielectric rnodulus en(C/Vm) 9.8722×10 -9 15.04×10 -9 

Critical energy release rate Ccr (J/m 2) 4.0 5.0 

5.1 Field intensity factors 

As given in Eqs. (49) --  (52), all of the field 

intensity factors are independent  of the electrical 

loading, if an electrically cont inuous crack sur- 

face condi t ion is assumed. If on the other hand an 

electrically impermeable crack surface condi t ion 

is assumed, intensity factors, other than the stress 

intensity factor, are dependent  on the electrical 

loading, as indicated in Eqs. (54) --  (57). Conse- 

quently, for the current central crack problem, the 

stress intensity factor is determined as a function 

of only the mechanical  loading for both the con- 

t inuous and the impermeable crack surface con- 

ditions. This implies that the piezoelectric prop- 

erties such as piezoelectric and dielectric con- 

stants as well as the electrical loading do not have 

any influence upon  the stress intensity factor. This 

is consistent with the earlier findings of the crack 

problems of infinite or finite geometric piezoelec- 

tric bodiessee, e.g., the works of Pak (1990), Sosa 

(1991), Shindo et a1.(1996, 1997), and Kwon and 

Lee (2000, 2001). 

Figure 2 shows the stress intensity factor as a 

function of normalised crack length a / R  for the 

electrically cont inuous and impermeable crack 

surface conditions.  The stress intensity factor in- 

creases with the increase of a / R ,  regardless of 

the electrical crack surface condit ions and mate- 

rial properties. Assuming a crack in the un-  

bounded piezoelectric sol id:  i.e., a / R - *  O, the 

stress intensity factor approaches unity. This fact 

Continuous & Impermeable Crack 
2.0 ~ ~ I ' I ~ I f I 

.8 t '~o = 1.0 (N/m 2) / 
Do = 1,0xl0 -3 (C/m 2) / 

1.6 

1.4 BaTiO3 

12 " 

l o  ~ - - - - + ' - " ~  r [ , I ~ I _ 
0.0 0.2 0.4 0.6 0.8 1 0 

a /R  

Fig. 2 Km versus a / R  for continuous and imper- 
meable crack surface conditions 
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C o n t i n u o u s  Crack  

1.6 | ~ I ~ I ' I ' 1 

t0 = 1.0 (N/m 2) : /  
/ 

1,2 Do = 1 .Oxl0 -3 (Elm 2) s / 

/ 

PZT-511 ~ ~ ~ ~ 

0.8 - ~  

~2 
0.4 

0.0 

BaTiO3 

7~ 

I , I _ ~ _ _ L _ ~ _  I , 
02 0.4 0.6 0.8 10 

a / R  

Fig. 3 Ko versus a / R  for continuous crack surface 
condition 

validates the present solution because it agrees 

with the result of Pak (1990). 

The electric displacement intensity factor as a 

function of a / R  is displayed in Fig. 3 for the 

continuous crack condition. In this case, the elec- 

tric displacement intensity factor also increases 

with the increase of a / R ,  but its magnitude is 

affected by the material properties. The larger 

values of electric displacement intensity factor 

appear in PZT-5H than BaTiO3. 

Figure 4 shows the electric displacement inten- 

sity factor as a function of a / R  for the imper- 

meable crack condition under positive electrical 

loading. The electric displacement intensity factor 

increases with the increase in a / R ,  regardless of 

[mperraeable  C r a c k  
2.0 ~ - -  

I I ' t , L , , 

1.8 ~ To = 1.0 (N/m 2) / 
k / 

J2 

1 . o k _ _ - ~ . ~  ~ ,  i _ ,  i ~ i L _ _ ,  
0.0 0.2 0.4 0.6 0.8 10  

a / R  

Fig. 4 KD versus a / R  for impermeable crack surface 
condition 

Fig. 5 

I m p e r m e a b l e  C r a c k  
8 0  - -  r I ' I ' I - - -  

a / R = 0 . 6  

4.01 Xo = I.o fN/m ~) /~z ~,"  

a / R  = 0 .2  

0 - a / R  = 0,4 :~:fT/ 
BaTiO 

• y~/ PZT-Stt 

/ 

-6.0 -4.0 -20 0 20  4.0 6.0 

Do ( x l O  4 C / m : )  

KD versus Do for impermeable crack surface 
condition 

the material properties. However, the electric dis- 

placement intensity factor can decrease with the 

increase of a / R  under negative electrical loading. 

This is because the direction of electrical loading 

affects the electric displacement intensity factor, 

as shown in Fig. 5. From Figs. 4 and 5, it is 

noted that the trend and absolute values of the 

electric displacement intensity factor for the im- 

permeable crack are quite different from that 

corresponding to the continuous crack condition 

shown in Fig. 3. 

5.2 Energy release rate 

As given in Eqs. (53) and (58), the energy 

release rate for the continuous crack is only de- 

termined by the mechanical properties, while for 

the impermeable crack condition it is related to 

all of the mechanical and electrical properties. 

This result also agrees with the earlier findings of 

the crack problem in infinite or finite piezoelec- 

tric bodies see the works of Pak (1990), Sosa 

(1991), Shindo et al. (1996, 1997), and Kwon and 

Lee (2000, 2001). 

Figure 6 shows the energy release rate as a 

function of normalised crack length a / R  for 

theelectrically continuous crack surface condi- 

tion. In this case, the numerical results show the 

same trend as those observed with the stress and 

electric displacement intensity factors; i.e., the 

energy release rate is influenced considerably by 
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1o f 
1.2 ~ -  

0.8 

0 . 4  

Fig. 6 

C o n t i n u o u s  C r a c k  
i r i I[ 

t 1 I 

~o = 1.0 (N/m 2) / /  
/ 

Do = 1.0x 10 .3 (C/rn ~) / / 

/ 

/ /  

BaTiO~ 

I r , i , i , 
0.0 0.2 04 0,6 0.8 1.0 

a/R 

G versus a/R for continuous crack surface 
condition 

400 

O, 

-100 1 

-200 

-300 

Fig. 8 

.400 L 

-6.0 

I m p e r m e a b l e  C r a c k  

I ~ I ' I 

PZT-5H 

i 1 I ........ 
-40 -2.0 0 2.0 4.0 6.0 

D o  ( x l O  -3 C / m  2) 

G versus Do for impermeable crack surface 
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the change in a/R, but its magnitude is affected 

by the material properties. The large value ap- 

pears in the case when PZT-5H is used. It is also 

noted that the energy release rate is always posi- 

tive for the continuous crack boundary condition 

as the results of Shindo et a1.(1996, 1997). 

Figure 7 displays the energy release rate for the 

electrically impermeable crack surface condition 

under positive electrical loading. In this case, the 

energy release rate decreases with the increase of 

a/R, and is always negative. This phenomenon, 

which can result in retarding crack propagation, 

is also obtained under the negative electrical 

loading as shown in Fig. 8, as observed in previ- 

ous studies for impermeable cracked piezoelectric 

I m p e r m e a b l e  C r a c k  

' I ' I ' I ' I ' 

PZT-5II" ~ ~ 
-10 

-20 BaTi03 

; i 
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-4o , E ~ I , r ~ I , 
0.0 0.2 0.4 0.6 0.8 1.0 

a/R 

Fig. 7 G versus air  for impermeable crack surface 
condition 

material (Pak, 1990). This fact is different from 

the condition that the electric displacement inten- 

sity factor can be positive or negative depending 

upon the direction of electrical loading. 

6. Concluding Remarks 

In this study, a general solution is provided for 

a Griffith crack in a circular piezoelectric ceramic 

disc of finite radius under combined anti-plane 

mechanical and in-plane electrical loading. The 

theoretical procedures and solutions are presented 

using Mellin transforms, Fourier series, dual in- 

tegral equations and Fredholm integral equation 

of the second kind. Solutions are also provided 

to study the influence of the crack length, electric- 

ally continuous and impermeable crack surface 

conditions on the resulting field intensity factors 

and energy release. Several numerical examples 

are considered and the results reveal : 

(i) The stress intensity factor depends on only 

the mechanical loading for both the continuous 

and impermeable crack surface conditions; it is 

not affected by the electric constants and/or elec- 

tric loading, 

(ii) The field intensity factor and the energy 

release rate are independent of the electrical 

loading when considering the electrically con- 

tinuous crack surface condition. However, the 

energy release rate and other intensity factors, 
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except the stress intensity factor, depend on the 
electric load when considering the impermeable 
crack condition, 

(iii) For the electrically impermeable crack 
surface condition, the direction of electrical load- 
ing affects the positive or negative value of the 
electric displacement intensity factor. While on 
the other, the energy release rate is always nega- 
tive, regardless of the direction of electric load, 
which can result in retarding crack propagation. 

Appendix 

Equations (33) and (35) can be derived from 
the following special formulae of Mellin tran- 
sforms (Sneddon, 1951): 

I fc+i=F(S)F(P) 
2JriJc-~ F(S+P) X-sdS 

={ (1-X)e-I"0-<X<I}0 " X>I  
(A-l) 

1 f c + ~ F ( P - S ) F ( I - P )  
2~i dc-~ ~ -X-SdS 

={ 0 "0-<X<I } 
( X - l )  - e '  X>I  

(A-2) 

1 p _ _ > l  (~_)z, By superseding S --> ~-s, ~ and X -+ 

Eqs (A-l) and (A-2) are rewritten respectively as 

F/1 \ F I 1 \ 
l f ~ + ' = ' l ~ 2 ) s t 2 s )  r -= 

2/ri ¢-~ 2 F ( I + I s ) ( ~ - ) d s  

' l r l < ~  = 

0 ' l r l > #  

(A-3) 

Equation (A-3) is the same as Eq. (35), and the 
following relations (Magnus et al., 1966) are used 
to obtain Eq. (33) from Eq. (A-4): 

1 1 ~(~-~s)-- 
1 1 a" ,(~+~)c~(~) 

1 7r F( 1-ys)-p(~=)=in(~s)l 
(A-5) 

Therefore, employing (A-5), Eq. (A-4) can be 
expressed as Eq. (33) : 

[ '~ [ 1 

2-xiJc-~ ~ - { ~ - )  tanITs)ds 
2FI T+TS ] (A-6) {° / 

= ~ I r l > #  

Equation (34) can be determined by applying the 
Cauchy's residue theorem, i.e., 

/1 1 1 

2r[T+TS ] 

<~+ln) (~)" <~_+) (~)" 

(A-7) 

The following relations are obtained from the 
results of Magnus et al. (1966) : 

1 1 /'(-i-n) &-+~-n) 
1 1 n 1 F(~--r,) ~/'(~-,,) cot(2)=o (A-=/ 

Therefore, Eq. (A-7) can be reduced to Eq. (34): 

F I 1 l \F I 1 
l fC+i= t 2 - 2 s ] l t 2 ]  

2xi .¥-. 21"(1-½s) 

{ o l~l<~] 
= -~ I r l > 8  

(T) ~s 
(A-4) 

/.[ 1 \ F [  1 \ 
l r ~+~ t ? - )  tY s]l,.~-= s , 

777J~_,: ~ tY) ~-s~-s ~as 
t2 2 i  

1 1 ~(~)~(~n) 
1 1 4~(~+~) (~)~ 

(A-9) 
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